Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution
نویسندگان
چکیده
منابع مشابه
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and los...
متن کاملEmerging principles of regulatory evolution.
Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated gen...
متن کاملCis-regulatory landscapes of four cell types of the retina
The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photorecept...
متن کاملSystematic Detection of Polygenic cis-Regulatory Evolution
The idea that most morphological adaptations can be attributed to changes in the cis-regulation of gene expression levels has been gaining increasing acceptance, despite the fact that only a handful of such cases have so far been demonstrated. Moreover, because each of these cases involves only one gene, we lack any understanding of how natural selection may act on cis-regulation across entire ...
متن کاملFunctional Evolution of a cis-Regulatory Module
Lack of knowledge about how regulatory regions evolve in relation to their structure-function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module-the even-skipped stripe 2 enhancer-from four Drosophila species. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2014
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.1246426